Abstract

Hydrogenation of ester to alcohol is an essential reaction in organic chemistry due to its importance in the production of a wide range of bulk and fine chemicals. There are a number of homogeneous and heterogeneous catalyst systems reported in the literature for this useful reaction. Mostly, phosphine-based bifunctional catalysts, owing to their ability to show metal–ligand cooperation during catalytic reactions, are extensively used in these reactions. However, phosphine-based catalysts are difficult to synthesize and are also highly air- and moisture-sensitive, restricting broad applications. In contrast, N-heterocyclic carbenes (NHCs) can be easily synthesized, and their steric and electronic attributes can be fine-tuned easily. In recent times, many phosphine ligands have been replaced by potent σ-donor NHCs, and the resulting bifunctional metal–ligand systems are proven to be very efficient in several important catalytic reactions. This mini-review focuses the recent advances mainly on bifunctional metal–NHC complexes utilized as (pre)catalysts in ester hydrogenation reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call