Abstract

Abstract The relationship between acetate ester-forming activity of acetyl CoA alcohol transferase (ACAT), non-ethylene volatile emission, and flesh volatile content of “Rome” apples ( Malus domestica Borkh.) after removal from 9 months storage in low-oxygen environments was investigated. Apple samples held at 0–1°C were removed from refrigerated air (RA) or controlled-atmosphere (CA) storage at 1.0 or 0.5% v/v O 2 /1% CO 2 and placed in ambient laboratory conditions. Every three days fruit flesh and headspace were analyzed for volatile compounds using capillary gas chromatography. Acetate ester forming activity was assayed spectrophotometrically on partially-purified extracts of cortical tissue. Patterns of acetate ester formation depended upon storage environment and alcohol moiety precursor. Ethyl acetate content was always higher in the headspace and flesh of RA fruit, regardless of time after storage. Propyl acetate concentrations in CA stored apple flesh were higher until post-storage day 12 when they decreased. Headspace propyl acetate levels were higher in RA controls until days 9–15 when more emanated from CA fruit. Butyl acetate concentrations were lower in flesh and headspace of CA fruit until day 15, when RA fruit headspace levels decreased. Headspace and flesh concentrations of 2-methyl-1-butyl acetate were higher in CA apples. Acetate ester-forming activity was detectable at day 0 in 1.0% oxygen-stored fruits, but not in 0.5% oxygen-stored fruits. By post-storage day 9, ACAT activity in CA apples reached maximal levels, only to decrease by day 15. RA-stored apples had more ACAT activity at day 0, but did not substantially increase in activity like the 0.5% oxygen-stored apples removed from CA storage. It is unknown whether the ACAT protein is reactivated by exposure to ambient oxygen or synthesized de novo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.