Abstract

Breast tumor segmentation is a critical task in computer-aided diagnosis (CAD) systems for breast cancer detection because accurate tumor size, shape, and location are important for further tumor quantification and classification. However, segmenting small tumors in ultrasound images is challenging due to the speckle noise, varying tumor shapes and sizes among patients, and the existence of tumor-like image regions. Recently, deep learning-based approaches have achieved great success in biomedical image analysis, but current state-of-the-art approaches achieve poor performance for segmenting small breast tumors. In this paper, we propose a novel deep neural network architecture, namely the Enhanced Small Tumor-Aware Network (ESTAN), to accurately and robustly segment breast tumors. The Enhanced Small Tumor-Aware Network introduces two encoders to extract and fuse image context information at different scales, and utilizes row-column-wise kernels to adapt to the breast anatomy. We compare ESTAN and nine state-of-the-art approaches using seven quantitative metrics on three public breast ultrasound datasets, i.e., BUSIS, Dataset B, and BUSI. The results demonstrate that the proposed approach achieves the best overall performance and outperforms all other approaches on small tumor segmentation. Specifically, the Dice similarity coefficient (DSC) of ESTAN on the three datasets is 0.92, 0.82, and 0.78, respectively; and the DSC of ESTAN on the three datasets of small tumors is 0.89, 0.80, and 0.81, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.