Abstract

Despite the increased life expectancy of patients infected with human immunodeficiency virus-1 (HIV-1), liver disease has emerged as a common cause of their morbidity. The liver immunopathology caused by HIV-1 remains elusive. Small xenograft animal models with human hepatocytes and human immune system can recapitulate the human biology of the disease's pathogenesis. Herein, a protocol is described to establish a dual humanized mouse model through human hepatocytes and CD34+ hematopoietic stem/progenitor cells (HSPCs) transplantation, to study liver immunopathology as observed in HIV-infected patients. To achieve dual reconstitution, male TK-NOG (NOD.Cg-Prkdcscid Il2rgtm1Sug Tg(Alb-TK)7-2/ShiJic) mice are intraperitoneally injected with ganciclovir (GCV) doses to eliminate mouse transgenic liver cells, and with treosulfan for nonmyeloablative conditioning, both of which facilitate human hepatocyte (HEP) engraftment and human immune system (HIS) development. Human albumin (ALB) levels are evaluated for liver engraftment, and the presence of human immune cells in blood detected by flow cytometry confirms the establishment of human immune system. The model developed using the protocol described here resembles multiple components of liver damage from HIV-1 infection. Its establishment could prove to be essential for studies of hepatitis virus co-infection and for the evaluation of antiviral and antiretroviral drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.