Abstract
Abstract We investigate the viability of establishing low-cost surrogate structure-property (S–P) linkages by introducing a Bayesian model selection method to extend the Materials Knowledge Systems (MKS) homogenization framework, which employs the n-point spatial correlation function, principal component analysis, and regression techniques. In particular, we place emphasis not only on choosing the important structural features but also on interpreting their implications for the property under consideration. First, the yield strengths of synthetic microstructures with various morphological characteristics are estimated by physics-based crystal plasticity simulation. Then, the dimension-reduced microstructural features are revealed by a combination of 2-point spatial correlations and principal component analysis. The Bayesian model selection method is further applied to establish a microstructure-to-yield-strength surrogate model. Finally, the model is validated with an independent dataset and its constituent features are interpreted with a morphology reconstruction based on a Monte Carlo algorithm. The method is found to be capable of interpreting the key microstructural features as well as modeling the mechanical response of a dual-phase metallic composite in consideration of the diverse microstructural factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Conference on Computational & Experimental Engineering and Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.