Abstract

Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice.

Highlights

  • Pyruvate is a critical product in the metabolism of glucose and plays a central role in the synthesis of fatty acids and non-essential amino acids [1]

  • Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings

  • mitochondrial pyruvate carrier (MPC) complex is a hetero-oligomeric complex consisting of MPC1 and MPC2 which mounting in the inner mitochondrial membrane and it facilitates pyruvate into the mitochondrial matrix

Read more

Summary

Introduction

Pyruvate is a critical product in the metabolism of glucose and plays a central role in the synthesis of fatty acids and non-essential amino acids [1]. It is known that pyruvate, as well as some molecules, can freely diffuse the outer-membrane of mitochondria, but requires a specific carrier to transit to the inner mitochondrial membrane and reach the mitochondrial matrix [3]. Studies show that MPC1 mutations cause illness, including lactic acidosis, hyperpyruvatemia and other severe diseases, which lead to short life span in humans [6, 7]. Such roles of pyruvate metabolism were confirmed in other studies [9,10,11]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call