Abstract

In this study we evaluated the fragmentation pattern of 16 novel amphiphilic neoglycolipid cholesteryl derivatives that can be efficiently used to increase cationic liposomal stability and to enhance gene transfer ability. These neoglycolipids bear different sugar moieties, such as D-glucosamine, N-acetyl-D-glucosamine, N-trideuterioacetyl-D-glucosamine, N-acetyllactosamine, L-fucose, N-allyloxycarbonyl-D-glucosamine, and some of their per-O-acetylated derivatives. Regardless of the structure of the tested neoglycolipid, QqToF-MS analysis using electrospray ionization (ESI) source showed abundant protonated [M+H]+ species. We also identified by both QqToF-MS and low-energy collision tandem mass spectrometry (CID-MS/MS) of the [M+H]+ ion, the presence of specific common fingerprint fragment ions: [Cholestene]+, sugar [oxonium]+, [(Sugar-spacer-OH)+H]+, [oxonium-H2O]+, and [(Cholesterol-spacer-OH)+H]+. In addition, we observed a unique ion that could not be rationally explained by the expected fragmentation of these amphiphilic molecules. The structure of this ion was tentatively proposed with that of a C-glycoside species formed by a chemical reaction between the sugar portion and the cholesterol. MS/MS analysis of this unique [C-glycoside]+ confirmed the validity of the proposed structure of this ion. The presence of an amino group at position C-2 and free hydroxyl groups of the sugar motif is crucial for the formation of a "reactive" sugar oxonium ion that can form the [C-glycoside]+ species. In summary, we precisely established the fragmentation patterns of the tested series of neoglycolipid cholesteryl derivatives and authenticated their structure as well; moreover, we speculated on the formation of a C-glycoside with the ESI source under atmospheric pressure and in the collision cell during MS/MS analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.