Abstract

The present study describes degradation of stavudine under different stress conditions (hydrolysis, oxidation, photolysis and thermal stress), and establishment of a stability-indicating reversed-phase HPLC assay method. The drug was found to hydrolyse in acidic, neutral and alkaline conditions and also under oxidative stress. The major degradation product formed under various conditions was thymine, as evidenced through comparison with the standard and spectral studies (NMR, IR and MS) on the isolated product. Separation of drug, thymine and another minor degradation product was successfully achieved on a C-18 column utilising water–methanol in the ratio of 90:10. The detection wavelength was 265 nm. The method was validated with respect to linearity, precision (including intermediate precision), accuracy and specificity. The response was linear in the drug concentration range of 25–500 μg ml −1. The mean values (±R.S.D.) of slope and correlation coefficient were 24256 (±0.679) and 0.9994 (±0.0265), respectively. The R.S.D. values for intra- and inter-day precision studies were <0.210 and <1%, respectively. The recovery of the drug ranged between 99.7 and 101.5% from a mixture of degraded samples. The method even proved to be affective on application to a stressed marketed capsule formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call