Abstract

• A prediction method for asphalt pavement icing based on SVR algorithm was proposed. • A prediction model was established using the SVR method to analyze icing factors. • The BOA was used to automatically adjust the parameters of the prediction model. • The performance of prediction models with different kernel functions was compared. To improve the icing prediction accuracy of asphalt pavement, a prediction method for asphalt pavement icing based on the support vector regression (SVR) algorithm is proposed in this study. A prediction model was established using the SVR method to predict the icing time and thickness of the pavement on bridge at the low solar radiation (rainy), and analyze the effects of the external natural environment (ambient temperature, wind speed and water depth) on the freezing time and icing thickness. The Bayesian optimization algorithm (BOA) was also used to automatically adjust the parameters of the prediction model, which fully considered the coupling correlation of the influencing factors of the asphalt pavement icing. Finally, the prediction performances of the BOA-SVR models with different kernel functions were compared. The results show that the training-set prediction accuracy of the icing time and thickness reaches 99.2% and 92.9%, respectively, and the testing-set prediction accuracy of the icing time and thickness reach 97.7% and 84.4%, respectively. Therefore, the BOA-SVR model has high prediction accuracy. The water depth has the greatest influence on the icing time and thickness of the asphalt pavement, followed by the ambient temperature and wind speed. Overall, the BOA-SVR model can predict the icing time and thickness of the asphalt pavement more precisely compared to existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.