Abstract
A subline of human KB cells that was resistant to 1-beta-D-arabinofuranosylcytosine (ara-C) was established by continuous exposure of the cells to increasing concentrations of ara-C. Thirteen resistant clones were isolated from the resistant subline (KB/ara-C). KB/ara-C showed 1,300-fold higher resistance than the parent KB cells to ara-C; the most resistant clones, clones 7 and 10, showed 1,330-fold higher resistance. In the absence of ara-C, the resistance of the parent KB/ara-C cells was stable for at least 14 weeks, whereas that of clone 7 was stable for 10 weeks, but was slightly less after 14 weeks. The ara-C kinase and ara-C deaminase activities of the 13 clones and the cellular uptake of ara-C by several clones were measured. In general the clones showed decreased deoxycytidine kinase activity and decreased cellular uptake of ara-C. Most clones had higher cytidine deaminase activity than KB cells, but some had activity similar to that of the KB cells. A clear inverse relationship was found between the ara-C sensitivity of the clones and their kinase activity, but not their deaminase activity or their ara-C uptake. These results clearly demonstrate that a major mechanism of ara-C resistance of these human KB cells was a decrease in the activity of the ara-C activating enzyme deoxycytidine kinase. The parent KB/ara-C cells showed no clear cross-resistance to various antitumor agents other than an ara-C derivative, including metabolic inhibitors, alkylating agents, DNA binders and mitotic spindle poisons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.