Abstract

In vitro models of the human liver are promising alternatives to animal tests for drug development. Currently, primary human hepatocytes (PHHs) are preferred for pharmacokinetic and cytotoxicity tests. However, they are unable to recapitulate the flow of bile in hepatobiliary clearance owing to the lack of bile ducts, leading to the limitation of bile analysis. To address the issue, a liver organoid culture system that has a functional bile duct network is desired. In this study, we aimed to generate human iPSC-derived hepatobiliary organoids (hHBOs) consisting of hepatocytes and bile ducts. The two-step differentiation process under 2D and semi-3D culture conditions promoted the maturation of hHBOs on culture plates, in which hepatocyte clusters were covered with monolayered biliary tubes. We demonstrated that the hHBOs reproduced the flow of bile containing a fluorescent bile acid analog or medicinal drugs from hepatocytes into bile ducts via bile canaliculi. Furthermore, the hHBOs exhibited pathophysiological responses to troglitazone, such as cholestasis and cytotoxicity. Because the hHBOs can recapitulate the function of bile ducts in hepatobiliary clearance, they are suitable as a liver disease model and would be a novel in vitro platform system for pharmaceutical research use.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call