Abstract

Cadmium (Cd) is the main heavy metal pollutant in soil. The combination of genetic engineering technology and Rizobium rhizogenes mediated technology can effectively improve the enrichment efficiency of heavy metals in super accumulators and reduce soil heavy metal pollution. In this study, the transgenic hairy root system containing the IRT1 gene of Cd hyperaccumulator-Brassica campestris L. was successfully constructed by the R. rhizogenes mediated method (IRT1 gene come from Arabidopsis thaliana). The hairy roots of each subculture can grow stably within 6 weeks, and IRT1 gene will not be lost within 50 subcultures., which is detected using PCR method. The results of Cd enrichment experiments showed that after treatment with 100 µmol/L Cd for 14 days, the growth state of transgenic IRT1 hairy roots only showed slight browning. Also, the accumulation value of Cd reached 331.61 µg/g and the enrichment efficiency of transgenic IRT1 hairy roots was 13.8% higher than that of wild-type hairy roots. Western blotting results showed that the expression of IRT1 protein in transgenic hairy roots was significantly higher than that of wild-type hairy roots under Cd stress. The above results indicated that the overexpression of IRT1 gene can help B. campestris L. hairy roots to effectively cope with Cd stress and improve its ability to enrich Cd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call