Abstract

BackgroundTear deficiency due to lacrimal gland (LG) dysfunction is one of the major causes of dry eye disease (DED). Therefore, LG stem cell-based therapies have been extensively reported to regenerate injured lacrimal tissue; however, the number of stem cells in the LG tissue is low, and 2D long-term cultivation reduces the differentiation capacity of stem cells. Nevertheless, 3D LG organoids could be an alternative for a DED therapy because it is capable of prolonged growth while maintaining the characteristics of the LG tissue. Here, we report the development of LG organoids and their application as cell therapeutics.MethodsDigested cells from human LG tissue were mixed with Matrigel and cultured in five different media modified from human prostate/salivary organoid culture media. After organoid formation, the growth, specific marker expression, and histological characteristics were analyzed to authenticate the formation of LG organoids. The secretory function of LG organoids was confirmed through calcium influx or proteomics analysis after pilocarpine treatment. To explore the curability of the developed organoids, mouse-derived LG organoids were fabricated and transplanted into the lacrimal tissue of a mouse model of DED.ResultsThe histological features and specific marker expression of LG organoids were similar to those of normal LG tissue. In the pilocarpine-treated LG organoid, levels of internal Ca2+ ions and β-hexosaminidase, a lysosomal protein in tear fluid, were increased. In addition, the secreted proteins from pilocarpine-treated lacrimal organoids were identified through proteomics. More than 70% of the identified proteins were proven to exosome through gene ontology analysis. These results indicate that our developed organoid was pilocarpine reactive, demonstrating the function of LG. Additionally, we developed LG organoids from patients with Sjogren’s syndrome patients (SS) and confirmed that their histological features were similar to those of SS-derived LG tissue. Finally, we confirmed that the mouse LG organoids were well engrafted in the lacrimal tissue two weeks after transplantation.ConclusionThis study demonstrates that the established LG organoids resemble the characteristics of normal LG tissue and may be used as a therapy for patients with DED.

Highlights

  • Tear deficiency due to lacrimal gland (LG) dysfunction is one of the major causes of dry eye disease (DED)

  • The dissociated LG cells were embedded in Matrigel and grown respectively in five different conditions by modifying human prostate or salivary gland organoid media

  • We defined M-SA1 medium as an LG organoid medium (LGOM); (Fig. 1B)

Read more

Summary

Introduction

Tear deficiency due to lacrimal gland (LG) dysfunction is one of the major causes of dry eye disease (DED). Causes of glandular dysfunction range from deficiency and loss of tear film integrity, LG deterioration, to death of the secretory epithelial cells affected by hormonal imbalance, environmental changes, and autoimmune pathologies, leading to DED, a chronic condition [4]. DED has been defined as a multifactorial disease of the ocular surface characterized by the lack of tear film stability. It is accompanied by ocular symptoms in which unstable tear film, hyperosmolarity, ocular surface inflammation and damage, and neurosensory abnormalities play pathological roles [5]. Other regenerative strategies have recently been introduced to improve DED management [13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call