Abstract

Bovine embryonic stem cells (ESCs) are a powerful tool for agricultural and biomedical applications. The purpose of this study was to introduce a new method for generating bovine ESCs. Mechanically isolated bovine inner cell masses (ICMs) from in vitro-produced blastocysts were cultured individually on a 10-μL mouse embryonic fibroblast (MEF) feeder cell drop covered with oil. From 126 blastocysts classified by their developmental stage and ICM size, 21 primary bovine ESC-like colonies were formed (16.7%) and established six JNU (Jeju National University)-ibES cell lines (28.6%, 6/21; hatched blastocyst×4, hatching blastocyst×1, and expanded blastocyst×1). These cells exhibited typical ESC morphology, and pluripotency markers were detected through immunocytochemistry, RT-PCR, and real-time RT-PCR, including Oct4, stage-specific embryonic antigen-1 (SSEA-1), Nanog, Tumor rejection antigen-1-81, Rex1, and alkaline phosphatase. Through RT-PCR analysis of spontaneous differentiation, gene expression of all three embryonic germ layers was detected: ectodermal (Pax6 and DBH), mesodermal (CMP and Enolase), and endodermal [alpha fetoprotein (α-FP) and albumin]. In addition, JNU-ibES cell lines were directed differentiated into neuronal (Map2 and Tuj1) and glial (GFAP) cells. Bovine ESC lines had a normal karyotype, with a chromosome count of 58+XY (JNU-ibES-05). This is the first trial investigating a minimized microdrop culture method for the generation of bovine ESCs. These results demonstrated that the minimized MEF feeder cell drop can support the establishment of bovine ESC lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.