Abstract

Hirschsprung disease (HSCR) is a complex genetic disorder of the enteric nervous system that is characterized by a complete loss of the neuronal ganglion cells in the intestinal tract. It is one of the most frequent causes of congenital intestinal obstruction and more than 80% of the causative mutations are in RET. Here, we identified a new RET mutation in a patient and established a cell model that can be used to elucidate the pathogenesis of HSCR. Peripheral blood was collected from a patient who was clinically and pathologically diagnosed with HSCR with a heterozygous deletion mutation (c.180delT; p.Glu61ArgfsX163) in exon 2 of RET. Patient-derived induced pluripotent stem cell (iPSC) lines were generated from dermal fibroblasts. Using immunofluorescence staining and RT-PCR, we showed that the generated iPSCs expressed the pluripotency markers OCT4, SSEA4, SOX2, TRA-1-60, and NANOG. We also showed that the HSCR-iPSCs could differentiate into cells from all three germ layers by spontaneous in-vitro differentiation. In addition, 3 months after the administration of a subcutaneous injection of these iPSCs into nude mice, teratomas with all three germ layers were observed. We identified a new RET gene mutation causing HSCR and successfully established a human iPSC line from an HSCR patient carrying this novel RET mutation, which could be useful in pathogenesis studies of HSCR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call