Abstract
Theca cells, including theca interna cells and theca externa cells, are vital components of ovarian follicles. The aim of the present study is to identify a reliable method for the in vitro culture of theca cells from duck ovarian hierarchical (F4-F2) follicles. We improved the method for cell separation by using trypsin to further remove granular cells, and we increased the concentration of fetal bovine serum used in in vitro culture to improve cytoactivity. Cell antibody immunofluorescence (IF) showed that all inoculated cells could be stained by the CYP17A1/19A1 antibody but not by the FSHR antibody, which could stain granulosa cells. Furthermore, morphological differences were observed between the outlines of theca interna and externa cells and in their nuclei. Growth curve and CYP17A1/19A1 mRNA relative expression analyses suggested that the growth profile of theca interna cells may have been significantly different from that of theca externa cells in vitro. Theca interna cells experienced the logarithmic phase on d1–d2, the plateau phase on d2–d3, and the senescence phase after d3, while theca externa cells experienced the logarithmic phase on d1–d3, the plateau phase on d3–d5, and the senescence phase after d5. Taken together, these results suggested that we have successfully established a reliable theca cell culture model and further defined theca cell characteristics in vitro.
Highlights
Theca cells, including theca externa cells and theca interna cells, are vital components of ovarian follicles, and they originate from fibroblast-like stromal cells in the ovary [1]
It is noteworthy that theca externa cells and theca interna cells did not proliferate independently but grew mutually together
Theca cells are important for the recruitment, development, selection, and apoptosis of avian follicles
Summary
Theca cells, including theca externa cells and theca interna cells, are vital components of ovarian follicles, and they originate from fibroblast-like stromal cells in the ovary [1]. In terms of physiological functions, theca cells interact with granulosa cells and oocytes through members of the autocrine BMP and TGF-β families and other growth factors. They co-regulate follicular recruitment, development, selection, and degeneration [4,5,6]. Theca cells are involved in the development and apoptosis of follicles by synthesizing androgen and estrogen [2,7,8] These facts indicate that theca cells play a key role in the recruitment, development, selection, and apoptosis of avian follicles
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.