Abstract
This study aimed at establishing an economic evaluation model to encourage continuing improvement in performance analysis and applying for any infrastructure system of urban recycled water. A thorough study towards characterization and economic performance assessment of urban water reuse scheme were carried out. An integrated evaluation technique was developed by synthesizing the quantitative and qualitative performance indicators related to the water recycled technology and urban water cycle system. Specific performance indicators and indexes were aggregated into an economic analytical modelling for effective evaluation of the water reuse scheme and technology using uniform economic performance standards. Detailed economic analyses were successfully applied to enable determination of economic lifetime of the technology and the whole water reuse scheme. This research confirmed that productivity, efficiency and reliability measurements and factors could be successfully deployed for determining the scheme performance during various life cycle stages (e.g. design development, operational and functional verification, or comparison with other reuse projects). The economic assessment model was applied to improve uniformity of analytical process and performance measure. This article demonstrates benefits associated with the application of a standardized methodology for performing economic assessment and by maintaining strong correlation between multi-parameter approach and adopted performance criteria in terms of productivity, efficiency and reliability. However, to ensure effectiveness of this assessment, the process would require systematic and perpetual inventory of the scheme performance data, consideration of variable factors such as capital and recurrent costs.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.