Abstract

An analytical system based on rRNA-targeted reverse transcription-quantitative PCR (RT-qPCR) was established for the precise evaluation of human intestinal microbiota. Group- and species-specific primer sets for Clostridium perfringens, Lactobacillus spp. (six subgroups and three species), Enterococcus spp., and Staphylococcus spp. targeting 16S rRNA gene sequences were newly developed for the quantitative analysis of such subdominant populations in human intestines. They were used together with previously reported group-specific primer sets for Enterobacteriaceae, Pseudomonas spp., and six predominant bacterial groups (the Clostridium coccoides group, the Clostridium leptum subgroup, the Bacteroides fragilis group, Bifidobacterium spp., the Atopobium cluster, and Prevotella spp.) for the examination of fecal samples from 40 healthy adults by RT-qPCR with lower detection limits of 10(2) to 10(4) cells per g of feces. The RT-qPCR method gave data equivalent to those yielded by qPCR for predominant populations of more than 10(8) cells per g of feces and could quantify bacterial populations that were not detectable (Staphylococcus and Pseudomonas) or those only detected at lower incidences (Prevotella, C. perfringens, Lactobacillus, and Enterococcus) by qPCR or the culture method. The RT-qPCR analysis of Lactobacillus spp. at the subgroup level revealed that a subject has a mean of 4.6 subgroups, with an average count of log(10)(6.3 +/- 1.5) cells per g of feces. These results suggest that RT-qPCR is effective for the accurate enumeration of human intestinal microbiota, especially the entire analysis of both predominant and subdominant populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.