Abstract
Despite the fascinating biology of lichens, such as the symbiotic association of lichen-forming fungi (mycobiont) with their photosynthetic partners and their ability to grow in harsh habitats, lack of genetic tools manipulating mycobiont has hindered studies on genetic mechanisms underpinning lichen biology. Thus, we established an Agrobacterium tumefaciens-mediated transformation (ATMT) system for genetic transformation of a mycobiont isolated from Cladonia macilenta. A set of combinations of ATMT conditions, such as input biomass of mycobiont, co-cultivation period with Agrobacterium cells, and incubation temperature, were tested to identify an optimized ATMT condition for the C. macilenta mycobiont. As a result, more than 10 days of co-cultivation period and at least 2 mg of input biomass of the mycobiont were recommended for an efficient ATMT, owing to extremely slow growth rate of mycobionts in general. Moreover, we examined T-DNA copy number variation in a total of 180 transformants and found that 88% of the transformants had a single copy T-DNA insertion. To identify precise T-DNA insertion sites that interrupt gene function in C. macilenta, we performed TAIL-PCR analyses for selected transformants. A hypothetical gene encoding ankyrin repeats at its C-terminus was interrupted by T-DNA insertion in a transformant producing dark-brown colored pigment. Although the identification of the pigment awaits further investigation, this proof-of-concept study demonstrated the feasibility of use of ATMT in construction of a random T-DNA insertion mutant library in mycobionts for studying genetic mechanisms behind the lichen symbiosis, stress tolerance, and secondary metabolite biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.