Abstract
Myelination and the formation of nodes of Ranvier are essential for the rapid conduction of nerve impulses along axons in the peripheral nervous system (PNS). While many animal-based and serum-containing models of peripheral myelination have been developed, these have limited ability when it comes to studying genetic disorders affecting peripheral myelination. We report a fully induced pluripotent stem cell (iPSC)-derived human model of peripheral myelination using Schwann cells (SCs) and motoneurons, cultured in a serum-free medium on patterned and nonpatterned surfaces. Results demonstrated iPSC-derived SC-expressed early growth response protein 2 (Egr2), a key transcription factor for myelination, and after ∼30 days in coculture, hallmark features of myelination, including myelin segment and node of Ranvier formation, were observed. Myelin segments were stained for the myelin basic protein, which surrounded neurofilament-stained motoneuron axons. Clusters of voltage-gated sodium channels flanked by paranodal protein contactin-associated protein 1, indicating node of Ranvier formation, were also observed. High-resolution confocal microscopy allowed for 3D reconstruction and measurement of myelin g-ratios of myelin segments, with an average g-ratio of 0.67, consistent with reported values in the literature, indicating mature myelin segment formation. This iPSC-based model of peripheral myelination provides a platform to investigate numerous PNS diseases, including Charcot-Marie Tooth disorder, Guillian-Barre syndrome, chronic inflammatory demyelinating polyneuropathy, and antimyelin-associated glycoprotein peripheral neuropathy, with the potential for greater translatability to humans for improving the applicability for drug-screening programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.