Abstract

Radiation-induced skin fibrosis (RISF) can result from a plethora of scenarios including cancer therapy, accidental exposure, or acts of terrorism. Radioactive beams can penetrate through the skin and affect the structures in their path including skin, muscles, and internal organs. Skin is the first structure to get exposed to radiation and is susceptible to develop chronic fibrosis, which is challenging to treat. Currently, limited treatment options show moderate efficacy in mitigating radiation-related skin fibrosis. A key factor hindering the development of effective countermeasures is the absence of a convenient and robust model that could allow for translation of the experimental findings to humans. Here, a robust and reproducible murine hind limb skin fibrosis model has been established for prophylactic and therapeutic evaluation of possible agents for functional and molecular recovery. The right hind limb was irradiated using a single dose of 40 (Gray) Gy to induce skin fibrosis. Subjects developed edema and dermatitis in the early stages proceeded by visible skin constriction. Irradiated limbs showed a significantly reduced limb range of motion in the following weeks. In late stages, acute side effects subsided, yet chronic fibrosis persisted. A gait index was performed as an additional functional assay, which demonstrated the development of functional impairment. These non-invasive methods demonstrated reliable measurements for tracing fibrosis progression, which is supported by histological analyses. The radiation dose, application, and post-irradiation analyses employed in this model offer a vigorous and reproducible method for studying radiation-induced skin fibrosis and testing the efficacy of therapeutical agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.