Abstract

Axonemal dyneins are large AAA+ type motor proteins that exhibit unique motor properties during ciliary beating. This study established a mutation system for Tetrahymena outer arm dynein and characterized four nucleotide-binding loops (P-loops; P1-P4) in the alpha heavy chain (Dyh3p). Macronuclear transformation of the mutant DYH3 genes in DYH3-knockout (KO-DYH3) cells enabled P-loop mutations that abolish the ability of nucleotide binding to be stably maintained in the polyploid genome. This mutation system revealed that the P3 and P4 mutant dyneins rescued lethality in macronuclear KO-DYH3 cells and exhibited normal ciliary localization. Intriguingly, however, an in vitro motility assay showed that the P3 mutation abolished the motor activity of Dyh3p, whereas the P4 mutation did not affect the gliding velocity or gliding index of Dyh3p. In contrast, no P1 or P2 mutant cells were isolated from the KO-DYH3 cells, which suggests that nucleotide binding at the P1 and P2 sites is required for the intracellular function of Dyh3p. This mutation system will be useful for further molecular studies of diverse axonemal dyneins and ciliary motility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.