Abstract

Research has identified that gram-negative bacteria have an important role in refractory nasal polyps. In the present study, lipopolysaccharide (LPS) was used to establish a mouse model with neutrophilic nasal polyps in order to explore the effect and mechanism of LPS on the formation of neutrophilic nasal polyps in mice. A total of 5 or 10 µg of LPS was dropped into the nasal cavities of C57BL/6J mice in order to establish animal models with neutrophilic nasal polyps. Histological staining, toll-like receptor 4 (TLR4), cluster of differentiation 68 for macrophages and myeloperoxidase for neutrophil immunohistochemistry were used to observe histopathological changes in the nasal mucosa. The expression levels of cytokines, including interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-4 and IL-17 in the nasal lavage fluid, were detected by ELISA. Compared with the control group, mice in the LPS groups exhibited significant mucosa epithelial cell damage and nasal polyp formation. Furthermore, TLR4+ cells, macrophages, neutrophils and significantly increased levels of IFN-γ, TNF-α, and IL-17 in the nasal lavage fluids were indicated (all P=0.008). These findings indicated that LPS is able to activate the TLR4 receptor pathway to induce the formation of neutrophilic nasal polyps in mice. Additionally, LPS administration was accompanied by a significant increase in the number of macrophages, T helper (Th) 1 and Th17-related cytokines (P=0.009, P=0.008 and P=0.008, respectively). Therefore, the present model is commensurate with the characteristics of primary nasal polyps that have been identified in the Asian population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.