Abstract
Hepatitis B virus (HBV) is a virus whose replication cycle cannot be completely reproduced using cultured cell lines. Here, we report an engineered cell line capable of supporting the complete HBV life cycle. We generated HepG2 cells over-expressing the HBV entry receptor human NTCP (sodium taurocholate cotransporting polypeptide), and defective in RIG-I (retinoic acid-inducible gene-I)-like receptor signaling, by knocking down the IPS-1 (IFNβ-promoter stimulator-1) adaptor molecule. The resultant NtG20.i7 cells were susceptible to HBV, and its replication was detectable at 14 days post-infection and persisted for at least 35 days with a gradual increase of HBV core expression. The cells produced infectious HBV in the culture supernatant, and the addition of preS1 peptide myr47-WT, which blocks HBV entry, impaired the persistence of the infection. These findings suggest that the persistence of the infection was maintained by continuous release of infectious HBV virions and their re-infection. This system is useful for expanding our basic understanding of the HBV replication cycle and for screening of anti-HBV chemicals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.