Abstract

Perforated liners, especially in combination with a bias flow, are very effective sound absorbers. When appplied to gas turbine combustors, they can suppress thermo-acoustic instabilities and thus allow the application of new combustion concepts concerning higher efficiency and lower emissions. While the successful application of such a damping concept has been shown, it is still not possible to accurately predict the damping performance of a given configuration. This paper provides a comprehensive database of high quality experimental data. Variations of geometric, fluid mechanic, and acoustic parameters have been studied, including realistic engine configurations. The results demonstrate each parameter influence on the damping performance. A low order thermo-acoustic model is used to simulate the test configurations numerically. The model shows a good agreement with the measurements for a wide range of geometries and Strouhal and bias flow Mach numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.