Abstract
Introduction: Diabetes is an extremely dangerous disease due to the disorder of glucose metabolism in the body leading to serious complications and the cause other dangerous diseases. Therefore, the continuous monitoring of glucose levels in the body is particularly important in the prevention and treatment of this disease. Optical fiber sensors that apply the LSPR effect of silver nanoparticles show great potential in the field of sensors that enable precise label-free monitoring of analyte concentrations with high sensitivity, which is receiving much attention. Methods: Based on the sensitivity of the LSPR effect on the surface of AgNPs to the dielectric properties of the medium, namely the refractive index of the analyte solution. Variation in the LSPR conditions of AgNPs leads to either donation or reduction in optical power. Based on that mechanism, the fiber was used as a waveguide and was immobilized on a self-assembled monolayer of AgNPs 1 core surrounded by a microfluidic channel that allows the analyte solution to pass through the sensing area through a biological pump. This process of changing the capacity allows the assessment of glucose concentration in solution to a very small degree of change. Results: AgNPs of about 90 nm in size were quickly and simply synthesized with high stability and uniformity by chemical reduction with an Ethylene glycol reducing agent as demonstrated by FESEM, and DLS results. The LSPR wavelength of AgNPs solution observed by UV-vis spectrum is 435 nm. At the same time, a fiber-optic sensor system that monitors glucose concentration changes has also been successfully established with a sensitivity of 0.025 RIU corresponding to a detection of limited (LOD) of up to 0.35 mM. Conclusions: The optical fiber optical sensor based on the LSPR phenomenon of AgNPs was initially established and showed high sensitivity in detecting and monitoring changes in glucose concentration without the use of complex markers or enzymes. The compact size of the fiber sensor opens up the potential for integration into handheld optical devices to help monitor health more proactively. Keywords: Silver nanoparticles, LSPR, Glucose sensor, optical sensor, detection of limited.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.