Abstract
To develop a deep features-based model to classify benign and malignant breast lesions on full- filed digital mammography. The data of full-filed digital mammography in both craniocaudal view and mediolateral oblique view from 106 patients with breast neoplasms were analyzed. Twenty-three handcrafted features (HCF) were extracted from the images of the breast tumors and a suitable feature set of HCF was selected using t-test. The deep features (DF) were extracted from the 3 pre-trained deep learning models, namely AlexNet, VGG16 and GoogLeNet. With abundant breast tumor information from the craniocaudal view and mediolateral oblique view, we combined the two extracted features (DF and HCF) as the two-view features. A multi-classifier model was finally constructed based on the combined HCF and DF sets. The classification ability of different deep learning networks was evaluated. Quantitative evaluation results showed that the proposed HCF+DF model outperformed HCF model, and AlexNet produced the best performances among the 3 deep learning models. The proposed model that combines DF and HCF sets of breast tumors can effectively distinguish benign and malignant breast lesions on full-filed digital mammography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nan fang yi ke da xue xue bao = Journal of Southern Medical University
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.