Abstract

Mutations in the human myeloproliferative leukemia (MPL) protein gene are known to cause congenital amegakaryocytic thrombocytopenia (CAMT). The prognosis of this heritable disorder is poor and bone marrow transplantation is the only effective treatment. Here, by using the TALEN (transcription activator-like effector nuclease) technology, we created a zebrafish mpl mutant to model human CAMT. Disruption of zebrafish mpl lead to a severe reduction in thrombocytes and a high bleeding tendency, as well as deficiencies in adult hematopoietic stem/progenitor cells. We further demonstrated that thrombocytopenia in mpl mutant zebrafish was caused by impaired Tpo/Mpl/Jak2 signaling, resulting in reduced proliferation of thrombocyte precursors. These results indicate that mpl mutant zebrafish develop thrombocytopenia resembling the human CAMT. To utilize fully zebrafish to study thrombocyte biology and thrombocytopenia disorders, we generated a transgenic reporter line Tg(mpl:eGFP)smu4, in which green fluorescent protein (GFP) expression was driven by the mpl promoter. Detailed characterization of Tg(mpl:eGFP)smu4 fish confirmed that the thrombocyte lineage was specifically marked by GFP expression. In conclusion, we generated the first transmissible congenital thrombocytopenia zebrafish model mimicking human CAMT and a thrombocyte-specific transgenic line. Together with Tg(mpl:eGFP)smu4, mpl mutant zebrafish provide a useful tool for drug screening and study of thrombocytopoiesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.