Abstract

Human liver organoids (HLOs) are reliable tools to represent physiological human liver biology. However, their use is limited especially in basic sciences. One of the reasons for this would be the insufficient systematic methodology to handle HLOs, including culture system, functional assessment, and gene transduction. Here, we generated and characterized mouse L cells stably and simultaneously overexpressing R-spondin1, hepatocyte growth factor, fibroblast growth factor (FGF) 7, and FGF10 via lentiviral transduction. The conditioned medium of the cells contributed to HLO growth as a replacement of commercially available recombinant proteins, which leads to a significant reduction of their culture cost. Proliferative and maturation phases of the cells were controlled by switching the medium to facilitate the evaluation of hepatocyte function, including insulin responsiveness and intracellular lipid accumulation. Gene expression analysis revealed that HLOs highly expressed genes involved in lipid metabolism. Importantly, HLOs secreted physiologically matured very low-density lipoprotein, which is rarely observed in mice and in established cell lines. Efficient gene transduction into HLOs was achieved via a transient 2-dimensional culture during viral infection. This study provides an invaluable platform for utilizing HLOs in various research fields, such as molecular biology, pharmacology, toxicology, and regenerative medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.