Abstract
To predict the existence of micropapillary or solid components in invasive adenocarcinoma, a model was constructed using qualitative and quantitative features in high-resolution computed tomography (HRCT). Through pathological examinations, 176 lesions were divided into two groups depending on the presence or absence of micropapillary and/or solid components (MP/S): MP/S- group (n = 128) and MP/S + group (n = 48). Multivariate logistic regression analyses were used to identify independent predictors of the MP/S. Artificial intelligence (AI)-assisted diagnostic software was used to automatically identify the lesions and extract corresponding quantitative parameters on CT images. The qualitative, quantitative, and combined models were constructed according to the results of multivariate logistic regression analysis. The receiver operating characteristic (ROC) analysis was conducted to evaluate the discrimination capacity of the models with the area under the curve (AUC), sensitivity, and specificity calculated. The calibration and clinical utility of the three models were determined using the calibration curve and decision curve analysis (DCA), respectively. The combined model was visualized in a nomogram. The multivariate logistic regression analysis using both qualitative and quantitative features indicated that tumor shape (P = 0.029 OR = 4.89; 95% CI 1.175-20.379), pleural indentation (P = 0.039 OR = 1.91; 95% CI 0.791-4.631), and consolidation tumor ratios (CTR) (P < 0.001; OR = 1.05; 95% CI 1.036-1.070) were independent predictors for MP/S + . The areas under the curve (AUC) of the qualitative, quantitative, and combined models in predicting MP/S + were 0.844 (95% CI 0.778-0.909), 0.863 (95% CI 0.803-0.923), and 0.880 (95% CI 0.824-0.937). The combined model of AUC was the most superior and statistically better than qualitative model. The combined model could assist doctors to evaluate patient's prognoses and devise personalized diagnostic and treatment protocols for patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.