Abstract

At present, all the flight controllers of agricultural UAVs cannot accurately and quickly control the influencing factors of the UAV coupled rotor airflow backward tilt angle during the application process. To solve the above problem, a Rotor Airflow Backward Tilt Angle (RABTA) controller is established in this paper. The RABTA controller integrates advanced sensor technology with a novel algorithmic approach, utilizing real-time data acquisition and state–space analysis to dynamically adjust the UAV’s rotor airflow, ensuring precise control of the backward tilt angle. The control effect of the traditional flight controller and RABTA controller in the process of pesticide application and the corresponding operation effect are compared and analyzed. The comparison results show that the RABTA controller reduces the control error to less than 1 degree, achieving a 48.3% improvement in the uniformity of the distribution of pesticides droplets across the crop canopy, which means that the UAV field application effect is implemented and the innovation of the UAV field application control mode is realized.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call