Abstract

Objective The incidence and prevalence of type 2 diabetes are increasing with age. Nevertheless, there is lack of sensitive diagnostic tools and effective therapeutic regimens. We aimed to establish and verify a practical and valid diagnostic tool for this disease. Methods WGCNA was presented on the expression profiling of type 2 diabetic and normal islets in combined GSE25724 and GSE38642 datasets. By LASSO Cox regression analyses, a gene signature was constructed based on the genes in diabetes-related modules. ROC curves were plotted for assessing the diagnostic efficacy. Correlations between the genes and immune cell infiltration and pathways were analyzed. BST2 and BTBD1 expression was verified in glucotoxicity-induced and normal islet β cells. The influence of BST2 on β cell dysfunction was investigated under si-BST2 transfection. Results Totally, 14 coexpression modules were constructed, and red and cyan modules displayed the correlations to diabetes. The LASSO gene signature (BST2, BTBD1, IFIT1, IFIT3, and RTP4) was developed. The AUCs in the combined datasets and GSE20966 dataset were separately 0.914 and 0.910, confirming the excellent performance in diagnosing type 2 diabetes. Each gene in the model was distinctly correlated to immune cell infiltration and key signaling pathways (TGF-β and P53, etc.). The abnormal expression of BST2 and BTBD1 was confirmed in glucotoxicity-induced β cells. BST2 knockdown ameliorated β cell dysfunction and altered the activation of TGF-β and P53 pathways. Conclusion Our findings propose a gene signature with high efficacy to diagnose type 2 diabetes, which could assist and improve early diagnosis and therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call