Abstract

Tamoxifen (TAM) currently is still the drug of choice for endocrine therapy in patients with estrogen receptor positive breast cancer. However, the development of drug resistance not only limits the drug utilization, but also greatly reduces the survival of patients. At the same time, TAM is poorly understood in canine mammary gland tumors. Therefore, it is crucial to find effective methods to reverse drug resistance and prevent the development of drug resistance so as to improve the efficacy of endocrine therapy for breast cancer.Firstly, we successfully established two TAM-resistant canine mammary gland tumor cells lines including TAMp,TAMm by drug concentration gradient plus drug maintenance, and then we confirmed that the resistant cells have stronger proliferation, migration, invasion and cloning ability by CCK8, Wound healing assay, Transwell invasion assay and Clone formation assay. Second, we performed sequencing analysis of TAMm and CHMm and detected a large number of different expression genes, including reported and novel drug-resistant genes, and genes involved in complex biological processes. Finally, we explored the role of the classical Wnt signaling pathway in drug-resistant cells, and immunofluorescence and western blot results showed increased expression of Wnt pathway related genes β-catenin and P-GSK3β in drug-resistant cells, indicating abnormal activation of the classical Wnt/β-catenin pathway This study successfully established two TamR cell lines and assayed its resistance generation in many aspects, which provides a good experimental model and theoretical support for a more comprehensive understanding of the endocrine drug resistance mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.