Abstract

Hematopoietic stem cell transplantation (HSCT) donor–generated virus-specific T cells (VSTs) can provide effective treatment for viral infection post-HSCT but are not readily accessible to all patients. Off-the-shelf cryopreserved VSTs suitable for treatment of multiple patients are an attractive alternative. We generated a bank of 17 cytomegalovirus (CMV)–, 14 Epstein-Barr virus (EBV)–, and 15 adenovirus (AdV)–specific T cell products from 30 third-party donors. Donors were selected for expression of 6 core HLA antigens expressed at high frequency in the local transplant population. T cells were generated by co-culturing venous blood or mobilized hematopoietic stem cell (HSC)–derived mononuclear cells with monocyte-derived dendritic cells pulsed with overlapping peptides covering CMV pp65, AdV5 hexon, or EBV BZLF1/LMP2A/EBNA1 proteins. Addition of a CD14+ selection step instead of plate adherence to isolate monocytes before culture initiation significantly improved expansion in cultures from HSC material. Phenotyping showed the CD8+ subset to have significantly higher numbers of terminal effector T cells (CD45RA+62L−) and lower numbers of effector memory T cells (CD45RA−62L−) when compared with the CD4+ subset. Increased expression of the immunoinhibitory markers PD-1 and TIM-3 was noted on CD4+ but not CD8+ cells when compared with the control group. VST showed antiviral activity restricted through a variety of common HLAs, and modelling suggested a suitably HLA-matched product would be available for >90% of HSCT patients. Only a small number of carefully selected third-party donors are required to generate a VST bank of broad coverage, indicating the feasibility of local banking integrated into existing allogeneic HSCT programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call