Abstract

This study aimed to establish a general and efficient dissociation technique for detecting antibodies in circulating immune complexes (CICs) in serum and to evaluate its clinical application. CICs were efficiently separated from specimens using polyethylene glycol double-precipitation. The best conditions for anti-HBs dissociation from HBsAg-ICs were a pH of 1.80, incubation at 15 °C for 5–10 min, and detection within 10 min after neutralization. The mean dissociation rate, reproducibility, mean dissociation recovery rate and specificity of the new technique were 64.3%, < 5.97, 95.4 and 100%, respectively. They had a favourable linear relationship (r = 0.9932), and the stability of the reagents exceeded 24 months, except the CIC antibody dissociation reagent (> 12 months). Conditions for the dissociation of other CICs tested were similar, but there were differences in the rate of antibody dissociation. Different HBV-M patterns had significantly different levels and rates of antibody dissociation from HBsAg-IC (P < 0.05), and the detection rates of the corresponding antibodies in HCV, core-anti-HCV core antibody (HCV-ICs), HIV P24-anti-HIV P24 antibody (HIV-ICs), insulin-anti-insulin antibody (INS-ICs) and thyroid globulin-anti-thyroid globulin antibody CICs (TG-ICs) were 34.8, 66.7, 20 and 14.3%, respectively. These data suggest that our CIC antibody dissociation technique is a good general pretreatment technique for the detection of antibodies after the precipitation, separation and dissociation of multiple CICs.

Highlights

  • The invasion of pathogens, such as bacteria and viruses, into the body or alterations and the exposure of tissue components in the body may induce immune system responses, causing the production of specific immune effector cells and antibodies. These antibodies may bind to antigens to form immune complexes (ICs), which are cleared by the defence system to protect tissues against immune-induced damage [1,2,3]

  • Antibody ICs (TG-ICs), and anti-insulin antibody dissociated from insulin-anti-insulin antibody ICs (INS-ICs)

  • ELISA can be used to detect anti-hepatitis C virus (HCV) core antibody dissociated from HCV core-anti-HCV core antibody ICs (HCV-ICs) and anti-human immunodeficiency virus (HIV) P24 antibody dissociated from HIV P24-anti-HIV P24 antibody ICs (HIV-ICs)

Read more

Summary

Introduction

The invasion of pathogens, such as bacteria and viruses, into the body or alterations and the exposure of tissue components in the body may induce immune system responses, causing the production of specific immune effector cells and antibodies. These antibodies may bind to antigens to form immune complexes (ICs), which are cleared by the defence system to protect tissues against immune-induced damage [1,2,3]. Our novel technique for dissociating antibodies from CICs was assessed by detecting HBsAg-ICs as an example case, and relevant methodological parameters were preliminarily evaluated and applied

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.