Abstract

BackgroundCancer heterogeneity is a main obstacle for the development of effective therapies, as its replication in in vitro preclinical models is challenging. Around 96% of developed drugs are estimated to fail from discovery to the clinical trial phase probably because of the unsuitability and unreliability of current preclinical models (Front Pharmacol 9:6, 2018; Nat Rev Cancer 8: 147–56, 2008) in replicating the overall biology of tumors, for instance the tumor microenvironment. Breast cancer is the most frequent cancer among women causing the greatest number of cancer-related deaths. Breast cancer can typically be modeled in vitro through the use of tumoroids; however, current approaches using mouse tumoroids fail to reproduce crucial aspect of human breast cancer, while access to human cells is limited and the focus of ethical concerns. New models of breast cancer, such as companion dogs, have emerged given the resemblance of developed spontaneous mammary tumors to human breast cancer in many clinical and molecular aspects; however, they have so far failed to replicate the tumor microenvironment. The present work aimed at developing a robust canine mammary tumor model in the form of tumoroids which recapitulate the tumor diversity and heterogeneity.ResultsWe conducted a complete characterization of canine mammary tumoroids through histologic, molecular, and proteomic analysis, demonstrating their strong similarity to the primary tumor. We demonstrated that these tumoroids can be used as a drug screening model. In fact, we showed that paclitaxel, a human chemotherapeutic, could kill canine tumoroids with the same efficacy as human tumoroids with 0.1 to 1 μM of drug needed to kill 50% of the cells. Due to easy tissue availability, canine tumoroids can be produced at larger scale and cryopreserved to constitute a biobank. We have demonstrated that cryopreserved tumoroids keep the same histologic and molecular features (ER, PR, and HER2 expression) as fresh tumoroids. Furthermore, two cryopreservation techniques were compared from a proteomic point of view which showed that tumoroids made from frozen material allowed to maintain the same molecular diversity as from freshly dissociated tumor.ConclusionsThese findings revealed that canine mammary tumoroids can be easily generated and may provide an adequate and more reliable preclinical model to investigate tumorigenesis mechanisms and develop new treatments for both veterinary and human medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.