Abstract

Wax deposition on walls of oil pipes is a common occurrence in crude oil extraction and is one of the major impediments to oilfield production. The most common method of paraffin removal is superconducting car thermal washing. This study proposes a heat flow coupling model that can analyze the temperature of the tubing-casing annular space to solve the low efficiency problem caused by adjusting initial parameters empirically. Using the superconducting car thermal washing process at the test oil well in city of Daqing, Chine as research object, the real-time temperature of annulus under various initial conditions is acquired by the fully-distributed Raman optical fiber temperature monitoring system. Compared with the real time data, theoretical data has a maximum deviation of 5?C, this result verifies the accuracy of the model. Based on the model, the study investigates the optimal initial parameters of superconducting car thermal washing by taking effective depth as an optimization goal. The optimal parameters for oil wells with different working conditions are obtained to improve the effectiveness of paraffin removal and increase thermal efficiency. This study provides theoretical support and an inspection method to promote superconducting car thermal washing and paraffin removal as well as to improve productive efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.