Abstract

Traditional methods for determining radiation dose in nuclear medicine include the Monte Carlo method, the discrete ordinate method, and the point kernel integration method. This study presents a new mathematical model for predicting the radiation dose rate in the vicinity of nuclear medicine patients. A new algorithm was created by combining the physical model of "cylinder superposition" of the human body with integral analysis to assess the radiation dose rate in the vicinity of nuclear medicine patients. The model accurately predicted radiation dose rates within distances of 0.1-3.0 m, with a deviation of less than 11% compared to observed rates. The model demonstrated greater accuracy at shorter distances from the radiation source, with a deviation of only 1.55% from observed values at 0.1 m. The model proposed in this study effectively represents the spatial and temporal distribution of the radiation field around nuclear medicine patients and demonstrates good agreement with actual measurements. This model has the potential to serve as a radiation dose rate alert system in hospital environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.