Abstract

The study explores the intricate interplay between land use land cover (LULC), normalized difference vegetation index (NDVI), and land surface temperature (LST) within the Lower Son River Basin in India from 1991 to 2020. The region’s ecological balance has been increasingly strained due to rapid urbanization and changing land use patterns. Through a combination of Landsat TM & OLI/TIRS satellite imageries and geospatial analysis techniques, this study unveils the intricate connection between land use and land cover changes, vegetation, and land surface temperature variations. The study area is classified into three altitudinal zones (Zone I: 39–300 m, Zone II: 301–600 m and Zone III: 601–1,247 m) to examine the changes in depth. The area has seen significant changes in LULC, vegetation and LST in all the three altitudinal zones. The findings hold significant implications for sustainable land management and environmental conservation strategies in the Lower Son River Basin. As per the result, 103,438 ha of vegetation was converted into agriculture land and 82,572 ha of agricultural land was transformed into settlements from 1991 to 2020. This trend shows human pressure on the land resource in the study area. Minor increase in water body is seen which is attributed to commissioning of Bansagar dam. Zone I has seen highest settlement growth while Zone III experienced severe deforestation of around 15%. Zone II and III needs attention for holistic sustenance. Analysis of LST shows that it has increased by 0.82 °C from 1991 to 2020 which is a red flag. The study underscores the critical importance of balanced land use practices to preserve ecological integrity and mitigate the adverse effects of urbanization and climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call