Abstract

BackgroundDevelopment of instruments capable of detecting early stage vascular disease has increased interest in employing arterial stiffness (e.g. pulse wave velocity (PWV), augmentation index (AIx)) and endothelial dysfunction (e.g. reactive hyperemia index (RHI)) to diagnose atherosclerotic disease before occurrence of a cardiovascular event. However, amongst the equipment designed for this purpose, there is insufficient information regarding each of these parameters to establish appropriate cutoffs to distinguish between healthy and unhealthy blood vessels. To address these limitations, the study was designed to establish the upper arterial stiffness and endothelial function thresholds in a healthy population, by comparing the outputs from different instruments capable of measuring PWV, AIx and RHI.MethodsA systematic comparison of PWV, AIx and RHI was conducted to determine the inter-relationships between these parameters of vascular functionality. Outputs were obtained non-invasively using three instruments, the VP-1000 (VP), SphygmoCor (SC), and EndoPAT (EP), in 40 apparently healthy males and females.ResultsCorrelations were found between the brachial-ankle PWV and radial-ankle PWV (by VP and SC), and PWV (VP) with AIx (SC). The interchangeability of these outputs was demonstrated by the Bland Altman test, making it feasible to extrapolate cut-offs for radial-ankle PWV and AIx equivalent to brachial-ankle PWV that signify healthy vessels. In contrast, RHI showed no association with AIx, suggesting these endothelial and arterial parameters are functionally distinct.ConclusionsIt was concluded that it is possible to compare the vascular function outputs of different instruments and identify healthy from unhealthy vessels, even though the approaches for quantifying the underlying physiological processes may differ. In this way, non-invasive determination of arterial function could be a new paradigm for detecting existing early stage asymptomatic atherosclerotic disease in individuals using techniques that are amenable to the clinical setting.

Highlights

  • Development of instruments capable of detecting early stage vascular disease has increased interest in employing arterial stiffness (e.g. pulse wave velocity (PWV), augmentation index (AIx)) and endothelial dysfunction (e.g. reactive hyperemia index (RHI)) to diagnose atherosclerotic disease before occurrence of a cardiovascular event

  • Population characteristics Basic cardiovascular parameters (heart rate, systolic and diastolic blood pressure (BP)), for all participants were within the normal range for each parameter (Additional file 1: Table S1)

  • Neither Brachial-ankle pulse wave velocity (ba-Pulse wave velocity (PWV)) (VP-1000) nor Radial-ankle pulse wave velocity (ra-PWV) correlated with AIx

Read more

Summary

Introduction

Development of instruments capable of detecting early stage vascular disease has increased interest in employing arterial stiffness (e.g. pulse wave velocity (PWV), augmentation index (AIx)) and endothelial dysfunction (e.g. reactive hyperemia index (RHI)) to diagnose atherosclerotic disease before occurrence of a cardiovascular event. Amongst the equipment designed for this purpose, there is insufficient information regarding each of these parameters to establish appropriate cutoffs to distinguish between healthy and unhealthy blood vessels To address these limitations, the study was designed to establish the upper arterial stiffness and endothelial function thresholds in a healthy population, by comparing the outputs from different instruments capable of measuring PWV, AIx and RHI. It is possible to measure endothelial dysfunction via reactive hyperemia (RHI), which measures arterial dilatation in response to a brief period of ischemia [17] At this time, the most widely accepted (i.e. goldstandard) method of determining arterial stiffness is carotid-femoral (cf-) PWV [18] for which reference and normal values have been published [19], they have not yet been accepted for clinical diagnosis. While the correlation of FMD with endothelial dysfunction is excellent, the technical skills required to minimize variability for this procedure have kept it from being routinely used [22]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call