Abstract

Despite the global expansion of wind farms, effects of wind farm noise (WFN) on sleep remain poorly understood. This protocol details a randomized controlled trial designed to compare the sleep disruption characteristics of WFN versus road traffic noise (RTN). This study was a prospective, seven night within-subjects randomized controlled in-laboratory polysomnography-based trial. Four groups of adults were recruited from; <10 km away from a wind farm, including those with, and another group without, noise-related complaints; an urban RTN exposed group; and a group from a quiet rural area. Following an acclimation night, participants were exposed, in random order, to two separate nights with 20-s or 3-min duration WFN and RTN noise samples reproduced at multiple sound pressure levels during established sleep. Four other nights tested for continuous WFN exposure during wake and/or sleep on sleep outcomes. The primary analyses will assess changes in electroencephalography (EEG) assessed as micro-arousals (EEG shifts to faster frequencies lasting 3-15 s) and awakenings (>15 s events) from sleep by each noise type with acute (20-s) and more sustained (3-min) noise exposures. Secondary analyses will compare dose-response effects of sound pressure level and noise type on EEG K-complex probabilities and quantitative EEG measures, and cardiovascular activation responses. Group effects, self-reported noise sensitivity, and wake versus sleep noise exposure effects will also be examined. This study will help to clarify if wind farm noise has different sleep disruption characteristics compared to road traffic noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call