Abstract
This study aims to investigate promising mitigation strategies for improving the cracking performance of high recycled binder ratio (RBR) asphalt mixtures. Moisture-resistant aggregates that do not require anti-stripping agents, reclaimed asphalt pavement (RAP), and recycled asphalt shingles (RAS) were sampled for this study from sources in two climatic zones, south and north. The south-moisture-resistant (SR) mixtures were designed with 0.16 and 0.29 RBRs with RAP, while the north-moisture-resistant (NR) mixtures included 0.21 and 0.37 RBRs with RAP and 0.44 RBR with RAP/RAS. The mitigation strategies evaluated included a softer binder, a different binder source with higher ΔTc, a recycling agent (RA), reduced recycled binder availability (RBA), polymer-modified asphalt (PMA), and hybrid approaches including softer binder + RBA and PMA+RBA. The Indirect Tensile Asphalt Cracking Test (IDEAL-CT) and Disc-Shaped Compact Tension (DCT) test were conducted to capture intermediate-temperature and low-temperature cracking performance, respectively. In addition to the cracking tolerance index (CTindex), an IDEAL-CT interaction diagram analysis was added to further understanding the effect of mixture variables on cracking performance. The findings suggest that while no single strategy works for all RBR mixtures tested, RA, RBA, softer binder, or their combinations yield adequate cracking performance depending on factors including RAP binder stiffness and quantity, RA dose, climatic zone, and RBA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.