Abstract

The objective of this work was to enhance the product’s quality by concentrating on the machine’s optimized efficiency. In order to increase the machine’s reliability, the basis of reliability-centered maintenance approach was utilized. The purpose was to establish a planned preventive maintenance strategy to identify the machine’s critical components having a noteworthy effect on the product’s quality. The critical components were prioritized using failure mode and effect analysis (FMEA). The goal of the study was to decrease the ppm time interval for a CNC machine by simulating the projected preventive maintenance time interval. For this purpose, the simulation software ProModel 7.5 was implemented for the current preventive maintenance procedure to choose the best ppm time interval which contributed better norms. Five dissimilar optimization approaches were applied, however, the first approach yielded the prominent total system cost and the shorter ppm interval. The results of the study revealed that there was an increase of USD 1878 as a result of an increase in total system cost from USD 78,365 to USD 80,243. Preventive maintenance costs were reduced from USD 4196 to USD 2248 (46%). The costs associated with good parts increased from USD 8259 to USD 8294 (0.4%) and the costs associated with defective parts reduced from USD 171 to USD 3 (98.25%), respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.