Abstract

A simple approximate relationship between the ground-state eigenvector and the sum of matrix elements in each row has been established for real symmetric matrices with non-positive off-diagonal elements. Specifically, the i-th components of the ground-state eigenvector could be calculated by a(−Si)p+c, where Si is the sum of elements in the i-th row of the matrix with p, a and c being variational parameters. The simple relationship provides a straightforward method to directly calculate the ground-state eigenvector for a matrix. Our preliminary applications to the Hubbard model and the Ising model in a transverse field show encouraging results. The simple relationship also provides the optimal initial state for other more accurate methods, such as the Lanczos method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.