Abstract

Establishing low-resistance ohmic contact is critical for developing electronic devices based on traditional silicon and new low-dimensional materials. Due to unprecedented electronic and mechanical properties, the one-dimensional carbon nanotubes (CNTs) have been used as source/drain, gate, or tunnel to fabricate transistors. However, the mechanism causing low-resistance ohmic contact is not clear yet. Here, the hybrid atomic force microscopy-scanning electron microscopy (AFM-SEM) instrument was developed to establish lower-resistance ohmic contact between a radial compressed deformed multiwalled CNT bundle and high work function metal (platinum and gold). The radial compression structure under strong van der Waals attraction was in situ characterized through the SEM image to obtain the diameter and width and through AFM to get height and to perform nanoindentation, indicating that Pt has the smaller radial compression deformation. Molecular dynamics simulations exhibit that compared to Pt, a wider ribbon-like graphene layer formed when the radial compressed CNTs contacted with Au. The bond forming and electron orbital overlapping between C atoms of deformed CNTs and the high work function metal atom is beneficial for good electrical contact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call