Abstract

Several commercial companies, as well as various nations, have proposed to deploy or are deploying many satellites in Low Earth Orbit (LEO). These large constellations will greatly increase the number of satellites operating in relatively narrow altitude regions of space. The added space traffic in these regions will create many close approaches between the members of the large constellations and other space operators. These close approach situations can necessitate maneuver(s) to avoid a potential collision. Should both satellites have maneuvering capability, the question of how the overall collision avoidance procedures should be executed is raised. Some constellations may employ automated collision avoidance systems which interact differently than conventional human-in-the-loop systems. Interactions between an automated system and another operational satellite, between two automated systems or two nonautonomous systems present new challenges for executing effective collision avoidance. Additionally, the existence of non-maneuverable satellites and space debris continues to pose additional challenges. This paper is the first of several papers that will be documenting an International Academy of Astronautics study on this topic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.