Abstract

We investigated the effects of positive end-expiratory pressure (PEEP) and tidal volume (VT) on lung aeration, pulmonary mechanics, and the distribution of ventilation immediately after birth using a preterm rabbit model. Sixty preterm rabbits (27 d) received volume-targeted positive pressure ventilation from birth, with one of the 12 combinations of PEEP (0, 5, 8, or 10 cm H2O) and VT (4, 8, or 12 ml/kg). Outcomes included functional residual capacity (FRC), peak inflating pressure (PIP), dynamic compliance (Cd), and distribution of ventilation. Increasing PEEP from 0 to 10 cm H2O increased FRC by 4 ml/kg, increased Cd by 0.2 ml/kg/cm H2O, and reduced PIP by 5 cm H2O. Increasing VT from 4 to 12 ml/kg increased FRC by 2 ml/kg, increased Cd by 0.3 ml/kg/cm H2O, and increased PIP by 4 cmH2O. No effect of VT on FRC occurred at 0 or 5 PEEP, and no effect of PEEP occurred at VT = 4 ml/kg. At 0 PEEP, increasing VT increased the proportion of gas entering the smaller apical regions, whereas at 10 PEEP, increasing VT increased the proportion of gas entering basal regions, from 47% to 63%. Both PEEP and VT have independent, additive effects on FRC, lung mechanics, and the distribution of ventilation during the immediate newborn period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.