Abstract

BackgroundEpilepsy is a neurological disorder characterized by unpredictable seizures that can lead to severe health problems. EEG techniques have shown to be advantageous for studying and predicting epileptic seizures, thanks to their cost-effectiveness, non-invasiveness, portability and the capability for long-term monitoring. Linear and non-linear EEG analysis methods have been developed for the effective prediction of seizure onset, however both methods remain blind to underlying alterations of the structural and functional brain networks associated with epileptic seizures. Such information is employed in this study to develop novel method for epileptic seizure prediction. New MethodsIn this study, nonlinear partial directed coherence (NPDC) was employed as measure of functional brain networks (FBNs) and analyzed to reveal the directional flow of epilepsy-linked brain activity. A novel prediction strategy was then developed for the prediction of epileptic seizures by introducing extracted network features to an extreme learning machine (ELM). ResultsResults show that the proposed method achieved favorable performance across all subjects and in all EEG frequency bands, with best accuracy of 89.2% in beta band and an optimal prediction time of 1356.4 s in delta bands, which outperforms currently available approaches. Comparison with Existing MethodsOur NPDC based on FBNs methods approach surpasses the accuracy of pure graph theory and pure non-linear methods with a significantly increased prediction time. ConclusionsThe findings of this study demonstrate that the proposed prediction strategy is suitable for the prediction of seizure onset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.