Abstract
Ecstasy is an amphetamine-type substance that belongs to a popular group of illicit drugs known as “club drugs” whose consumption is rising in Brazil. The effects caused by this substance in the human organism are mainly psychological, including hallucinations, euphoria and other stimulant effects. The distribution of this drug is illegal, and effective strategies are required in order to detain its growth. One possible way to obtain useful information on ecstasy trafficking routes, sources of supply, clandestine laboratories and synthetic protocols is by its chemical components. In this paper, we present a data mining and predictive analysis for ecstasy tablets seized in two cities of Sao Paulo state (Brazil), Campinas and Ribeirao Preto, based on their chemical profile. We use the concentrations of 25 elements determined in the ecstasy samples by ICP-MS as our descriptive variables. We develop classification models based on support vector machines capable of predicting in which of the two cities an arbitrary ecstasy sample was most likely to have been seized. Our best model achieved a 81.59% prediction accuracy. The F-score measure shows that Se, Mo and Mg are the most significant elements that differentiate the samples from the two cities, and they alone are capable of yielding an SVM model which achieved the highest prediction accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.