Abstract

Telomeres are the protective structures at the end of eukaryotic chromosomes. Telomerase is a ribonucleoprotein that contains both an RNA and a protein component for the maintenance of telomere length. Telomerase activity is detected in the majority of malignant tumors, but not in normal somatic cells, suggesting that telomerase reactivation is a crucial step in cell immortality and carcinogenesis. The mechanism of how telomerase is activated during tumorigenesis remains unclear. However, the expression of the human telomerase reverse transcriptase (hTERT) gene, which encodes the catalytic protein subunit of human telomerase, has been shown to be the major determining factor. To gain insight into the mechanisms regulating hTERT expression and to facilitate the screening of agents that affect hTERT expression, we have established cell-based systems for monitoring hTERT expression. We linked the hTERT promoter to two different reporter genes encoding green fluorescence protein (GFP) and secreted alkaline phosphatase (SEAP), respectively. These constructs were then transfected into H1299 and hTERT-BJ1 cells. Stable clones harboring these DNA constructs were isolated. In these cells, hTERT expression can be monitored through the quantification of GFP or SEAP activity on an automatic plate reader. Using these systems, we have identified several small molecule compounds that affect the expression of telomerase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.